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INTRODUCTION
• Hormono-resistant metastatic prostate cancer

• Monitoring via Prostate Specific Antigen (PSA)
• Reference treatment: docetaxel + prednisone

• All results presented based on the control arm of a phase 
III trial (Tannock et al, Lancet Oncol, 2013)
• Training set: 400 patients randomly selected 

Development of mechanistic joint model

• Validation set: 196 patients
 Model evaluation and individual predictions
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Joint modeling of longitudinal and 
time to event data
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Joint modeling of longitudinal and 
time to event data 
 mainly in clinical epidemiology with linear models
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Informative censoring: Not a new issue

Hu C, Sale ME. A joint model for nonlinear longitudinal data with informative dropout. J Pharmacokinet
Pharmcodyn. 30:83–103 (2003).

Gastonguay, French, Heitjan, Rogers, Ahn, Ravva. Missing data in model-based pharmacometric
applications:points to consider. J Clin Pharmacol. 50:63S–74 (2010).

Bonate & Suttle. Effect of censoring due to progressive disease on tumor size kinetic parameter estimates. 
AAPS J. 15:832–39 (2013).

Bjornsson, Friberg, Simonson. Performance of Nonlinear Mixed Effects Models in the presence of 
informative dropout. AAPS J. 17: 245–55 (2013).

• Informative censoring: probability to not observe the 
biomarker depends on current unobserved value
• Poor responder: more likely of early event & less longitudinal data
• Good responder: more likely of late event & more data

 sample of longitudinal data is not representative
 some kinetic parameters identified only in survivors
 high shrinkage in poor responder

• When longitudinal and survival data analyzed separately
• (Some) bias in longitudinal parameters 
• Problems in VPC and simulations of longitudinal data
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Informative censoring: Not a new issue

Ribba, Holford, Mentré. The use of Model-Based Tumor-Size metrics to predict survival. Clin Pharmacol
Ther, 96: 133-5 (2014) 

Mistry. Time dependent bias of tumor growth rate and time to tumor regrowth. CPT:PSP, 5: 587 (2016).
Suissa. Immortal time bias in pharmaco-epidemiology. Am J Epidemiol, 167: 492-9 (2008)
Mistry & Ortega. A cautionary tale on using tumour growth rate to predict survival . BioRxiv preprint (2017).

• Informative censoring: probability to not observe the 
biomarker depends on current unobserved value
• Poor responder: more likely of early event & less longitudinal data
• Good responder: more likely of late event & more data

 sample of longitudinal data is not representative
 some kinetic parameters identified only in survivors
 high shrinkage in poor responder

• When longitudinal and survival data analyzed separately
• (Some) Bias in longitudinal parameters 
• Problems in VPC and simulations of longitudinal data
• Bias in estimated survival parameters
• Induced or hidden correlation between marker evolution and survival 

(inflated Type I error) 
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1. CTS to compare two-stage and 
joint modelling approaches
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Results (100 replicates, 500 patients)

• Small bias in biomarker parameters when ignoring censoring for fitting 
(two-stage or sequential approaches)

• Strong bias in survival parameters when using two-stage approach 
(i.e. no link, two-stage: type I error = 14%)
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2. Development of a mechanistic 
joint model for PSA and 
survival in metastatic patients

• Link function f
• No link
• Initial PSA
• Current PSA
• PSA slope
• Area under PSA
• S and R
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Results: model selection
(training set, 400 patients)

• Delta -2LL   PSA   vs  no link = 158   (p<10-35)
• Delta BIC   S & R vs  PSA      = 25
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Results (training set, 400 patients)
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Results (validation set, 196 patients)
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3. Individual dynamic prediction 
using joint model

• Learning sample: prior estimates

• New patient from validation sample

• Observed PSA data until landmark s
• Prediction of PSA and survival after s 

with uncertainty
• Using Hamiltonian Monte Carlo in 

STAN
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• Poor discrimination at time 0 beyond 6 months

• Good discrimination (AUC > 0.75) after 6, 12 or 18 months
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CONCLUSION

• New mechanistic model of PSA during metastatic cancer
• Use of joint modelling (here with SAEM)
• Model building and parameter estimates in learning data set

• Use Bayesian method (here with STAN) in validation set
• Predict PSA and survival with uncertainty
• Various landmark times
 Can be used for individual patient monitoring

• Need to asses overall predictability (Time-dependent AUC)

• Be careful of two-stage approaches and of using model-
derived metrics in survival analysis
• Time-dependent bias
• ‘To good to be true’ 
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Joint model= 2 submodels
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