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Outline

Introduction

1. Clinical Trial Simulation to Compare two-
stage and joint modelling

2. Development of a mechanistic joint model
for PSA and survival in metastatic patients

3. Individual dynamic prediction using joint
model

Conclusion




INTRODUCTION

 Hormono-resistant metastatic prostate cancer
« Monitoring via Prostate Specific Antigen (PSA)
« Reference treatment: docetaxel + prednisone

« All results presented based on the control arm of a phase

[l trial (Tannock et al, Lancet Oncol, 2013)
« Training set: 400 patients randomly selected

- Development of mechanistic joint model

Kaplan-Meier curve in the 400 patients
from the training dataset
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« Validation set: 196 patients
- Model evaluation and individual predictions




Joint modeling of longitudinal and
time to event data

PSA
+

Longitudinal data 4

e y;: vector of longitudinal measurements ¥ + +

e can be described by a nonlinear model +

Time-to-event data

® T1;: observed event time

® O;: event indicator
1 if event observed
| 0 ifevent not observed

6i

|

1
Time since treatment initiation Ti

TwO OBJECTIVES

@ To characterize the (non-linear) kinetics of a biomarker in presence of a
time-to-event

® To characterize the impact of this kinetics on a time-to-event




Joint modeling of longitudinal and

time to event data

—> mainly in clinical epidemiology with linear models

Sasdell o ol EMC Medicol Rsedreh Mittodology |20168) 16:168 1 o s
000 101161 87401602724 ' BMC Mmﬁ;'u'jg-‘&gﬁ;

Joint models for longitudinal and time-to- @
event data: a review of reporting quality
with a view to meta-analysis

Maria Sudell @, Auwanthi Kolamunnage-Dona® and Catrin Tudur-Smith
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N (%)
Full text or abstract available
Full text 63 (96.9)
Abstract 230

Dizoase Area

10 (15
2(138)
Patient status after trangplants B(123)

ognitive decline 7(108)

.2)
Renal disease 41(62)
Disability in the elderty 386
Heart related data 3 (46)
Schizophsenia 348)
Sdlerosis 3(456)
Other 11 (16.9)

Joumal

Statistics in Medicine 5.0
Joumal of the Royal Statistical Society. Series C: 4(62)
Applied Statistics
Ophthalmaloagy 346
Quality of Life Research 3 (46)
Joumal of the American Geriatrics Sodiety 2(3.0)
Joumal of the American Statistical Association 23.0)
Joumnals of Gerontology - Series B Peychological 231)
Sdences and Social Sciences
Statmstical Methods in Medical Research 23.1)

study per journal)
ason for joint modelling use®

To investigate the link between longitudinal and
time-to-event outcomes

time-to=event model

To increase efficiency 348
To reduce bias 2(30)
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Informative censoring: Not a new Issue
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 When longitudinal and survival data analyzed separately
e (Some) bias in longitudinal parameters
 Problems in VPC and simulations of longitudinal data

Hu C, Sale ME. A joint model for nonlinear longitudinal data with informative dropout. J Pharmacokinet
Pharmcodyn. 30:83-103 (2003).

Gastonguay, French, Heitjan, Rogers, Ahn, Ravva. Missing data in model-based pharmacometric
applications:points to consider. J Clin Pharmacol. 50:63S5-74 (2010).

Bonate & Suttle. Effect of censoring due to progressive disease on tumor size kinetic parameter estimates.
AAPS J. 15:832-39 (2013).

Bjornsson, Friberg, Simonson. Performance of Nonlinear Mixed Effects Models in the presence of
informative dropout. AAPS J. 17: 245-55 (2013).
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Informative censoring: Not a new Issue

* Informative censoring: probability to not observe the

biomarker depends on current unobserved value
* Poor responder: more likely of early event & less longitudinal data
* Good responder: more likely of late event & more data

» sample of longitudinal data is not representative
» some kinetic parameters identified only in survivors
» high shrinkage in poor responder

 When longitudinal and survival data analyzed separately
(Some) Bias in longitudinal parameters

Problems in VPC and simulations of longitudinal data

Bias in estimated survival parameters

Induced or hidden correlation between marker evolution and survival
(inflated Type | error)

Ribba, Holford, Mentré. The use of Model-Based Tumor-Size metrics to predict survival. Clin Pharmacol
Ther, 96: 133-5 (2014)

Mistry. Time dependent bias of tumor growth rate and time to tumor regrowth. CPT:PSP, 5: 587 (2016).

Suissa. Immortal time bias in pharmaco-epidemiology. Am J Epidemiol, 167: 492-9 (2008)

Mistry & Ortega. A cautionary tale on using tumour growth rate to predict survival . BioRxiv preprint (2017).




1. CTS to compare two-stage and
joint modelling approaches

The AAPS Joumal, Vol. 17, No. 3, May 2015 (© 2015)
DO 10.1208/s12248-015-9745-5

Research Article

Nonlinear Mixed-Effect Models for Prostate-Specific Antigen Kinetics and Link
with Survival in the Context of Metastatic Prostate Cancer: a Comparison
by Simulation of Two-Stage and Joint Approaches

. ~ s 1.2.4 o s 1,2 o~ s s v + 3 s s . - 1,2
Soleéne Desmee, France Mentre, ™~ Christine Veyrat-Follet,” and Jérémie Gued;j
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Results (100 replicates. 500 patients)
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2. Development of a mechanistic
joint model for PSA and
survival in metastatic patients

Using the SAEM Algorithm for Mechanistic Joint Models
Characterizing the Relationship between Nonlinear PSA Kinetics and
Survival in Prostate Cancer Patients

Solene Desmée,'?* France Mentré,? Christine Veyrat-Follet,? Bernard Sébastien,* and

Jérémie Guedj'?
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Results: model selection
(training set, 400 patients)

BIC and parameters estimates (r.s.e.(%)) of PSA kinetics and survival in the 400 patients
of the training dataset

Nolink|  Initial PSA PSA PSA slope Aregsilder S+R

BIC 14593 14582 12446 14581 14575 14421
as  0.066 (3) 0.060 (3) 0.078 (3) 0.078 (3) 0.061 (3) 0.067 (3)
RE 09997 (0)  0.9996(0) 09998 (0)  0.9998 (0) 0.9997 (0) 0.9993 (0)
RE  081(1) 0.79 (1) 0.84 (1) 0.84 (0) 0.79 (1) 0.82 (1)

e 0.42 (4) 0.46 (4) 0.35 (4) 0.35 (5) 0.47 (4) 0.43 (3)
PSA,  22.2(8) 22.2 (8) 22.0 (3) 225 (8) 22.2 (8) 21.9 (8)
Npax 56 (4) 57 (4) 81 (4) 77 (4) 57 (4) 120 (4)
1 885 (4) 1615 (8) 4259 (15) 920 (4) 1435 (7) 906 (7)

—. 1.52 (5) 1.53 (3) 1.28 (2) 1.48 (2) 1.19 (2) 1()

B i 0.21 (12) 0.40 (7) 17 (17) 0.00023 (8)  0.00032 (21)

0.39 (7)

= S+R model: f(t,y;) = Blog(S(t,v;)) + p'log(R(t,y;)) with a constant
baseline hazard function (k = 1) provided the smaller BIC

 Delta-2LL PSA vs nolink =158 (p<10-3)
e Delta BIC S&Rvs PSA =25




Results (training set, 400 patients)

INDIVIDUAL FITS OF PSA AND HAZARD FUNCTIONS
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Results (validation set, 196 patients)
PREDICTION IN THE VALIDATION SAMPLE

Assumption: true joint model is known
=> Population parameters 8 used as priors
=> Individual EBEs v; estimated using only the PSA measurements

=> Mean survival function = %Zi‘\il S; (t]ir;,0)

Survival

00 02 04 06 08 1.0

0 500 1000 1500
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3. Individual dynamic prediction
using joint model

Desmée et al. BMC Medical Research Methodology (2017) 17:105 .
DOI10.1186/s12874-017-0382-9 BMC M edﬁg{ﬁga%algg

o
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PSA
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Nonlinear joint models for individual @
dynamic prediction of risk of death using
Hamiltonian Monte Carlo: application to
metastatic prostate cancer

Soléne Desmée'”, France Mentrg!, Christine Veyrat—FoHe‘rz, Bernard Sébastien® and Jérémie Guedj’
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* Learning sample: prior estimates

s

* New patient from validation sample

v

Landmark time s

 Observed PSA data until landmark s

 Prediction of PSA and survival after s
with uncertainty

e Using Hamiltonian Monte Carlo in
STAN g




DYNAMIC PREDICTIONS FOR 2 PATIENTS

PATIENT 1 DIED AT 24 MONTHS - PATIENT 2 WAS CENSORED AT 24 MONTHS

Patient 1 - Landmark 12 months

PSA (ng.mL ")
100 1000 10000
1 ]

10

0 6 12 18 24

0 G 12 18 24
Time since treatment initiation (months)

Survival

PSA (ng.mL ")
100 1000 10000

10

Patient 2 - Landmark 12 months

0 6 12 18 24

| | | !
0 6 12 18 24
Time since treatment initiation (months)

Survival




TiME-DEPENDENT AUC

Discrimination: ability of the model to distinguish patients of low

and high risk of death
= Area under the ROC curve (AUC)
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* Poor discrimination at time 0 beyond 6 months

 (Good discrimination (AUC > 0.75) after 6, 12 or 18 months




CONCLUSION

 New mechanistic model of PSA during metastatic cancer
e Use of joint modelling (here with SAEM)
* Model building and parameter estimates in learning data set

* Use Bayesian method (here with STAN) in validation set
* Predict PSA and survival with uncertainty
e Various landmark times
- Can be used for individual patient monitoring

* Need to asses overall predictability (Time-dependent AUC)

 Be careful of two-stage approaches and of using model-
derived metrics in survival analysis
* Time-dependent bias
e ‘To good to be true’
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LETTERS TO THE EDITOR

Time-Dependent Bias of Tumor Growth Rate and Time to

Tumor Regrowth
To the Editor:

In a recent study by Han et al.” the authors highlight that a
tumor growth inhibition metric termed time-to-tumor-growth
(TTG) derived from imaging time-series data is a strong
predictor of survival. The authors demonstrate the strength
of TTG’s correlation to survival using Kaplan-Meier curves
in Figure 2 of their article. Indeed, the relationship seems
incredibly strong, maybe too good to be true. Perhaps it
could well be as we now explain. One of the key forms of
bias when using covariates that are time-dependent, which
TTG and, in fact, any model-derived metrics are, is time-
dependent (immortal time) bias.® In basic terms, this form
of bias relates to the failure to account for the time taken to
estimate a time-dependent covariate when performing a
survival analysis. The Kaplan-Meier’s plotted in Figure 2 of
Han et al.’ assume that TTG is known at the beginning of
the study; which is clearly not true. TTG can only be calcu-
lated once a certain amount of time-series data has been
collected. Therefore, the Kaplan-Meier curves in Figure 2
are incredibly misleading and biased. The article by Suissa®
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Figure 2 Survival distribution by quarties of time to tumor
growth (each group represents 25% of the patients). TTG, time
to tumor growth; OS, overall survival.

Han, K. et al. Simulations to predict clinical trial outcome of bevacizumab plus chemo-
therapy vs. chemotherapy alone in patients with first-line gastric cancer and elevated
plasma VEGF-A. CPT Pharmacometrics Syst. Pharmacol. 5, 352-358 (2016).

Suissa, S. Immortal time bias in phamaco-epidemiology. Am. J. Epidemiol. 167,
492-499 (2008).
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The Use of Model-Based Tumor-Size Metrics to
Predict Survival

B Ribba!, N Holford? and F Mentré?

CLINICAL PHARMACOLOGY & THERAPEUTICS | VOLUME 96 NUMBER 2 | AUGUST 2014
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Figure 1 Relationship of the type | error of the Wald test with mean survival times for tumaor-size
reduction (T5SRé, blue continuous line) and time-to-tumor-growth (TTG, red continuous line) metrics. The
type | error of falsely concluding an assodiation between each tumor metric and hazard was estimated
from the frequency of rejecting the null hypothesis using aWald test of size 5%. A total of 1,000 data

sets were created for each of the nine survival-simulation scenarios. By design, the survival distribution
was independent of tumor size, so the empirical type | error rates are all expected to fall within the 95%
prediction interval. The gray band represents the 95% prediction interval around 5% type | error (for
1,000 replicates: 3.65 to 6.35%). The dashed lines represent the values of the metrics calculated using the
reference "true”individual parameter values. Inset: Shrinkage of TSR6 and TTG with mean survival time.




Joint model= 2 submodels

LONGITUDINAL PART: Nonlinear mixed-effect models (NLMEM)

yi(t) =log(X(t,w;)+1)+¢€;(1)

+
= X: process of interest (PSA) possibly non-linear
= ;: individual longitudinal parameters ¥ + *
m e;(t): residual error +
SURVIVAL PART: Hazard function for patient i:
hi(tly;) = ho(t) exp(Bx f(t, ;) forr=0
Si(tlyi)=P(T; = t) =exp |- [y hi(uly;)du]

6i
e Link function f depends on v/; and longitudinal model (eg., i
log[PSA(t,y;)])

lime since treatment initiation Ti

Joint log-likelihood for a patient i:

LL;®) =log [ p(yi1n:;0){hi(Tini;0)° S (T;1ni;0)} pni;0)dn;
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